

The Provincial Energy Goals... BChydro @

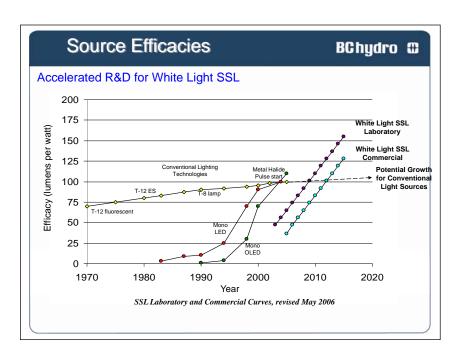
BC Provincial Energy Commitments:

- -50% of BC Hydro's incremental resource needs met by conservation by 2020
- BC Government carbon neutral by 2010
- -BC will be electricity self-sufficient by 2016

12/19/2008

The Municipal Challenges...

BChydro @


- Local government's spend significant amounts of money on excess lighting
- BC municipalities have committed to lowering greenhouse gases
- -Power costs are rising faster than inflation.

A Practical Solution

BChydro @

- The most immediate solution and the cleanest source of energy is "the energy that isn't used"
- Municipalities have reduced facilities energy costs assisted by Power Smart Energy Efficiency programs and Provincial incentives
- What can we do for Roadway Lighting?

3

BChydro @

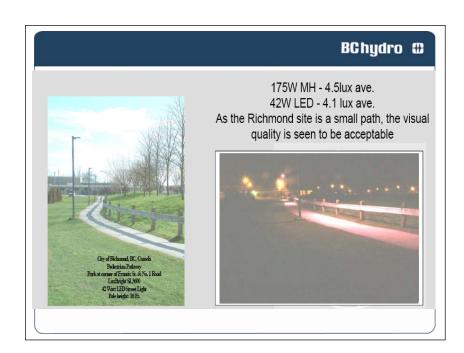
LED Heads for Street and Roadway Lighting

Richmond:

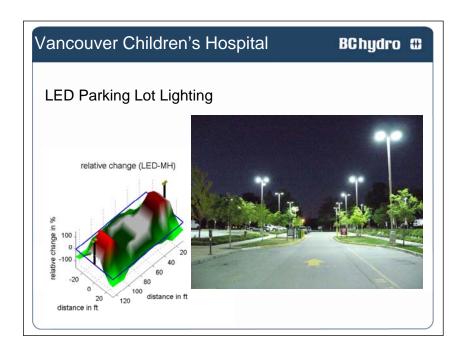
3 -175W MH pathway luminaires, mounted at 4.5m were replaced with 42W LED luminaire

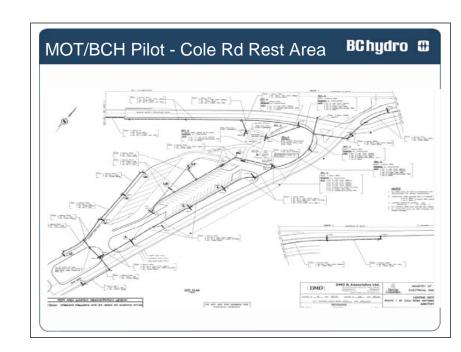
. Using the Lux Bright of California 42W LED head

Surrey:

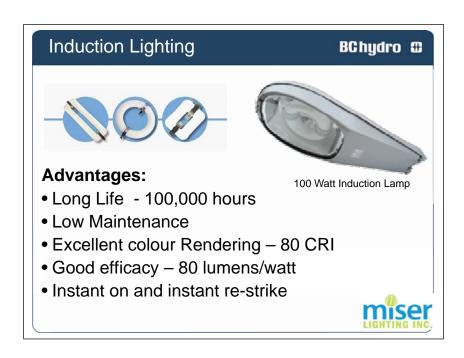

3 -100W HPS mounted at 7.5m were replaced with the 42W LED luminaire

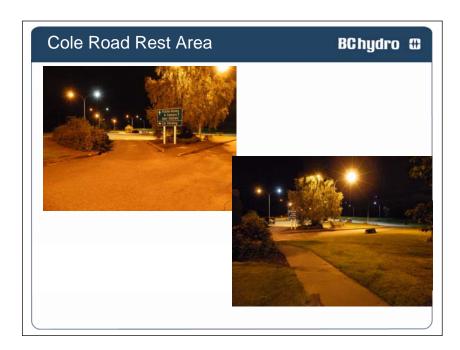
. Using the Lux Bright of California 42W LED head

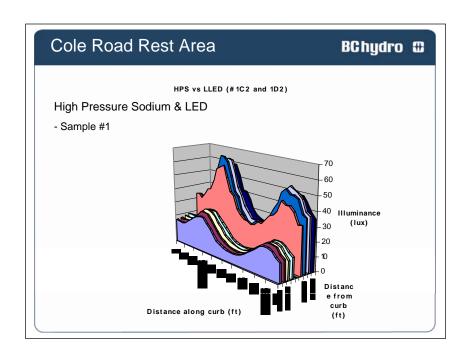

5


12/19/2008

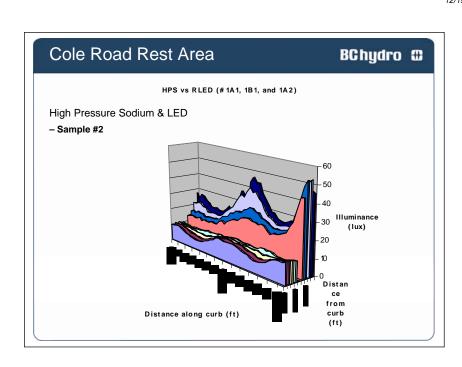
12/19/2008

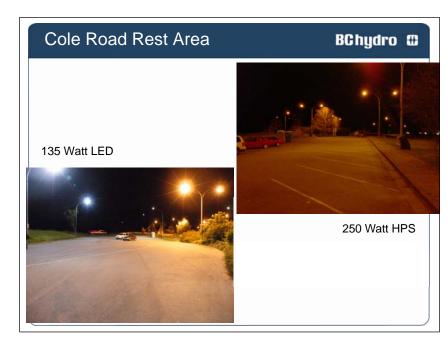


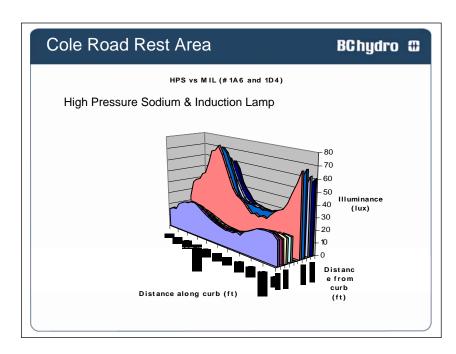


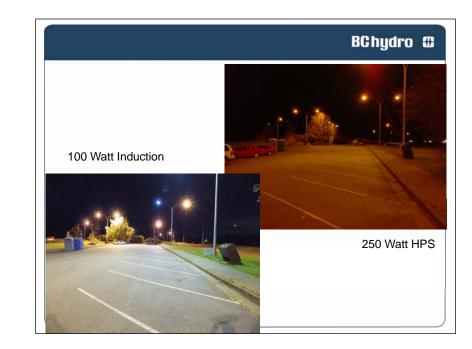


12/19/2008

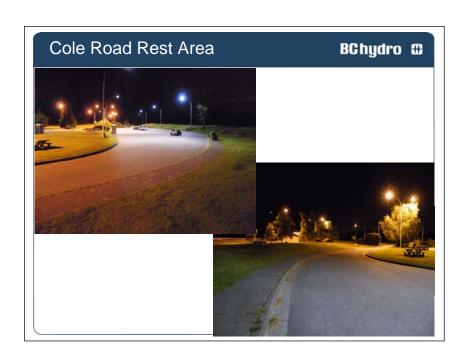



13

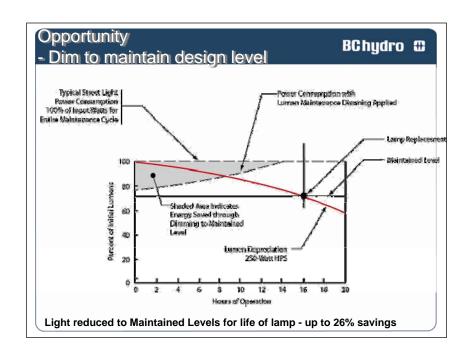

12/19/2008


15

12/19/2008

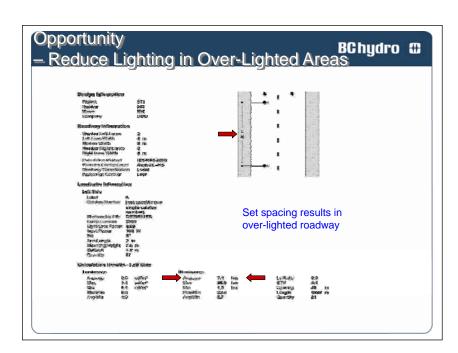


17


12/19/2008

12/19/2008

	daptive Lighting Street Lighting Opportu	nities BChydro @
	Opportunity	Advantage
1	Reduce Lumen Output of Lamps to Maintained Levels	Energy Savings Obtrusive Light Reduction
2	Dim Over-Lighted Neighborhoods	Potential Significant Energy Savings Obtrusive Light Reduction
3	Match Lumen Output to Variable IESNA Pedestrian Conflict Levels	Significant Energy Savings Obtrusive Light Reduction



21

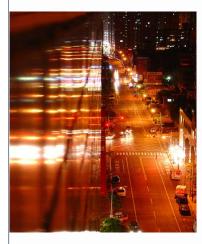
12/19/2008

12/19/2008

22

					vels	
Road and Pedes	Pavement Classification			Uniformity Ratio	Veiling Lummance	
Road	Pedestrian Conflict Area	R1 luxfic	R2 & R3	R4 Juxfic	E _{zvg} /E _{scin}	Ratio Lucas Long
Freeway Class A		6.0/0,6	9,0/0,9	8.0/0.6	3.0	0.3
Preeway Class B		4.0/0.4	6.0/0.6	5.0/0.5	3.0	0.3
	High	10.0/1.0	14.0/1.4	13,0/1.3	3.0	9.3.
Expressway	Medium	R OW R	12.0/1.2	10.0/1.0	3.0	0,3
	Low	6.0/0,6	0,0/0,9	8.0/0.8	3.0	0.3
	High	12.0/1.2	17.0/1.7	15.0/1.5	3.0	0.3
Major	Madium	9.0/0.9	13.0/1.3	11.0/1.1	3.0	0.3
	Low	6.0/0.8	9.000.9	8,0/0,8	3,0	0.3
	High	8.0/0.8	12.0/1.2	10.0/1.0	4.0	0.4
Callector	Medium	6,0/0.6	9,0/0,9	8.0/0.8	4.0	0.4
	Low	4.000.4	6.0/0.8	5.0/0.5	4.0	0.4
	High	6.0/0,6	0.070.0	8.0/0.8	6.0	0.4
Local	Medium	5.0/0.5	7.0/0.7	6.0/0.6	6.0	0.4
	Low	3,0/0.3	4.0/0.4	4.0/0.4	6.0	0.4

23 |


IESNA Roadway Classifications High – Medium - Low

BChydro @

- The IESNA classifies by pedestrian activity:
- High 100 or more pedestrians per hour
 - within a city block (200m)
- *Medium* 11 to 99 pedestrians
- Low 10 or fewer pedestrians

Adapt Lighting to the Requirements BChydro C

- Unless there is "High" activity throughout the night,
- the lower levels allow for safety and safe movement of vehicles and pedestrians.
- The potential energy savings up to 50%

25

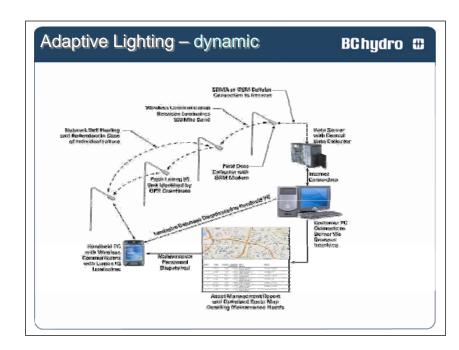
12/19/2008

12/19/2008

26

28

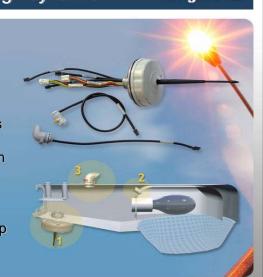
Control Types


BChydro @

Adaptive Lighting Controls & Equipment

- Static
 - Preset schedule or time
 - Not adjustable
- Dynamic
 - Programmable
 - Adjustable
 - Two-way communication

29


12/19/2008

12/19/2008

30

Adaptive Lighting - dynamic BChydro C

- Microprocessor controlled
- Wireless communications
- Intelligently controls the output of the lamp to meet design specs for entire lifespan
- Easy to install on existing or new lamp fixtures

Transit line operational until 8 p.m. with varying pedestrian conflict levels.

Energy Savings Prince George Pilot

BChydro @

67 Luminaires were converted

16 luminaires were dusk to dawn controlled only

- 4 luminaires were dimmed to 50% 11pm to 6am
- 47 luminaires were dimmed to 70% 11pm to 6 am

Power consumption at 100% light = 312 W

Power consumption at 70% light = 232 W

Power consumption at 50% light = 187 W

Annual Savings this Project: 36,000 kWh

Percent Savings: 26.5%

August 2005 to Sept 2006

BChydro @ Conclusions

Performance assumptions were verified through laboratory and field testing

Significant benefits and potential for owners and society:

- Dimming will Save Money and Reduce Future Infrastructure Needs
- Obtrusive Light will be Reduced
- System Streamlines Asset Management
- Energy Consumption can be Tracked for Un-metered Installations

33

12/19/2008

35

12/19/2008

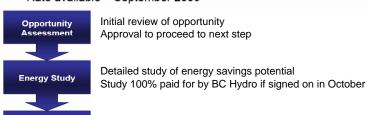
36

The BC Picture

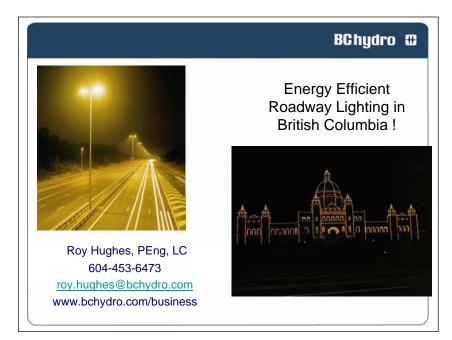
BChydro @

Why BC Hydro is considering Adaptive Roadway Lighting

There are 300,000 street lights in BC.


Estimated power consumed in a year would be approximately 360 million kWh.

Just imagine 20% reduction in off peak hours.


That's 72 million kWh hours per year

Program BChydro @

- Program officially launched September 2008
- Currently working on infrastructure
 - Rate application approval December 2008
 - Infrastructure implementation August 2009
 - Rate available September 2009

Hydro incentives cover up to 60% of the installed costs of the technology.

Questions

BChydro @

• Contact information:

 Roy Hughes, PEng, LC BC Hydro Engineering BC Hydro Power Smart 604-453-6472

roy.hughes@bchydro.com

• www.bchydro.com