

Municipality of Anchorage Dept. of Health and Human Services Environmental Services Division

in association with

Acknowledgments

- Municipality of Anchorage
	- Department of Health and Human Services
	- Anchorage Water and Wastewater Utility
- Steering Committee
	- Jim Cross, DHHS
	- Dr. Bruce Chandler, DHHS
	- Don Kiefer, AWWU
	- Sharon Minsch, On-Site W/W Tech Ad Bd.
	- Dr. Craig Woolard, On-Site W/W Tech Ad Bd.
	- Gordon Nelson, USGS

Project Team

- Montgomery Watson
	- Bill Rice
	- Greta Myerchin
	- Larry Gall
	- Lida Fialova
	- Eric Gropp
	- Mel Langdon, P.E.
	- Victor Harris
	- Dana Stewart
	- Brett Jokela
- GeoNorth
	- Mark Pearson
	- Greg Daniels
- US Geological Survey
	- Dr. Bronwen Wang
	- Pat Strelakos
- Anchorage DHHS – Jeff Poet
- Arctic Pump & Well Service
	- Jim Sullivan

Study Background

- Over 14,000 lots have on-site water supply and/or wastewater disposal in Anchorage
- Development pressure is increasing on the margins of the city.
- Nitrate contamination has implications for public health:
	- $\mathcal{L}_{\mathcal{A}}$ methemoglobinemia
	- $\mathcal{L}_{\mathcal{A}}$ mobile precursor/indicator of sewage-borne pathogens

Findings from Phase I

- Nitrate occurrences concentrated in certain areas of the Hillside.
- Very few violations of WQ Stds. apparent.
- Limited time series of data available-Unable to discern long term trends.
- Lot size not necessarily the key to projecting nitrate occurrence.

Phase II Goals

- Map best available data on NO3 occurrence.
- Identify primary factors associated with NO3 occurrence.
- ID and prioritize vulnerable areas of Muni.
- Develop long-term monitoring program.
- Present data and analysis to the public.

Principal data sources

- DHHS HAA database (by GeoNorth)
- DHHS On-Site Wastewater files
- ADEC Nitrate data for Public Water systems
- Hillside Drainage Study maps
- USGS digital elevation models
- MOA GIS & CAMA data

Is nitrate increasing in private wells?

- Nitrate is reported for a private well when a property changes ownership.
- Sampling is irregular.
- Results are censored for values >10mg/L.
	- Seller must obtain Health Authority Approval
	- High nitrate results go unreported
- Trends might be gleaned from wide area mapping

Time series data is available from monitoring at Peters Creek Landfill

Other landfill wells do not suggest increasing trends in nitrates.

ADEC collects periodic data from public water systems.

- Annual monitoring required for Class A,B, and C systems; More often if NO3>5 mg/L
- Can be used to develop nitrate time series.
- Bias for results <10 mg/L unlikely.

Some public wells regularly exceed drinking water criteria for NO3.

Lakeridge Terrace Lot 15A/16A

Trends for some wells are unmistakable.

Sun Valley Heights North

Not all time series are as compelling.

Chapel of the Cross

More trends are increasing than decreasing.

Statistical time series trends don't tell the whole story.

Grace Brethren Church

Step function increases will not be recognized by linear trend analysis

Chugiak Benefit Association

What factors contribute to nitrate vulnerability?

- Geologic Conditions
- Source Conditions
- Well Construction Conditions

Geologic factors provide the basis for $\rm NO_3$ mobility

- Soil type/permeability
- Depth to bedrock
- Depth to groundwater
- Slope: Topographic and water table
- Preferential pathways

Well construction may also contribute to NO $_3$ occurrence

- Depth of well
- Distance to sources
- Screened or perforated interval
- Integrity of casing
- Surface condition

Prospective nitrate source factors may include:

- Dwelling density
- Lot density
- Bedroom density
- Nitrogen-fixing vegetation
- Livestock

Summarize #BR within a given range

Can these factors be combined into a model of vulnerability?

- Use existing data to develop model for the Anchorage Hillside.
- Focus on pilot areas:
	- **Hart Communication** Dense NO3 representation.
	- Reasonable variation in NO3 values.
	- and the contract of the contract of Existing mapping for geologic interpretation.
- • Evaluate potential contributing factors for the pilot area.

• Extrapolate findings to other areas.

Variables were researched from existing databases & well logs.

- •Well Depth
- \bullet Case Depth
- Soil Absorption Rating
- •Distance Between Well and Septic Field
- \bullet Water Yield from the Well
- Leach Field Sizing (HBR)
- •Sum of Bedrooms
- \bullet Depth to Bedrock
- \bullet Terrain Units

Analysis focused on DeArmoun Pilot Area

- 120 acres
- 292 parcels
- Some data from over 100 wells.
- 23 sites had data available for all nine variables considered.

above Bedrock (ft.)

Hydrogeologic interpretation with existing data was limited.

- Cross sections drawn with best available information, but:
	- **Hart Communication** Well logs too sparse to provide good correlation of strata;
	- **Hart Communication** Terrain Unit Mapping useful for surface features only;
	- and the contract of the contract of Well construction data limited to depth.
- Conceptual model of groundwater movement shown for DeArmoun area

We applied a variety of statistical approaches seeking a reliable set of vulnerability factors: • Correlation Analysis

- Regression Analysis
	- Linear
	- Multivariate Model
	- **Hart Communication** Others did not look promising
- No Non-Parametric Tests
- •Nitrate Groupings

Our plan was to identify sensitive factors by visual and quantitative analysis

Significant factors would be derived from analysis of pilot area data.

Plot histogram of values for each potential factor

 $NO₃$ Concentration

Plot factor values versus nitrate concentration

Discount factors with weak trend or poor statistical correlation.

Regression Analysis

- •Data set (23 samples)
- Poor correlations for single variables
- Multivariate analysis
	- **Hart Committee Committee** Attempted for 9 variables
	- "Best" fit for 5 variables
	- and the contract of the contract of R-squared <0.4
- Collinearity problems
- Non-normal data problems

Dearmoun Study Area Nitrate vs. Distance Well to Septic Field (n=104)

Failing useful linear correlations, we attempted to view the data by classes

- Divide NO3 findings into 4 ranges: 0-1 mg/L $-1-2$ mg/L $2-4$ mg/L >4 mg/L
- Compare distribution of factor data by box and whisker plots

DeArmoun Data Sets $N=32$ $N=40$ 500 600 \circ 500 400 400 300 G EPTH \equiv 300 C A S § 200 \circ 200 **NRATING:** 100 卓 100 $1) \leq 1$ mg/L 0¹ 0_0 0 1 2 3 4 5 0 1 2 3 4 5 2) 1-2 mg/L NRATING NRATING $N=101$ α α α α β β β 3) 2-4 mg/L 300 800 $4) > 4$ mg/L 700 600 200 \bullet 500 R O C K E P T H 400 B E D W D 300 100 200 100 0_L ^L 0 0 1 2 3 4 5 0 1 2 3 4 5 NRATING NRATING

DeArmoun Data Sets

Results of DeArmoun Analysis

- Data suggests weak trend higher nitrate values might be associated with:
	- Higher water yields
	- Low well depths
- But, there is no statistical significance associated with individual variables or their interactions
- Try similar analysis on independent subsets of the DeArmoun database.

Subset analysis confirms that we can't count on these relationships

- Mountain Park results corroborate DeArmoun findings that higher nitrate values may be associated with:
	- Higher water yields
	- Shallow well depths
- Aspen Highlands did not follow.
- Mountain Park subset may dominate DeArmoun.

Conclusions from statistical analysis

- No significant relationship between nitrate and any one of the proposed factors.
	- Poor correlations
	- Relationships change based on sample set
- No significant relationship between nitrate and any grouping of the proposed factors.
	- $\mathcal{L}_{\mathcal{A}}$ Collinearity issues
	- Data quality uncertain

Uncertainty and poor data quality cloud the findings

- Database is limited and hampered by lack of concurrent sampling and other controls.
- Unaccounted variables
	- $\mathcal{L}_{\mathcal{A}}$ Actual wastewater discharge volumes
	- $\mathcal{L}_{\mathcal{A}}$ Differences in development calculations
	- How well the water well was constructed
	- $\mathcal{L}_{\mathcal{A}}$ How well the septic field was constructed
	- Some other human-related variable

We looked for better data to support model development.

- Build localized cross section diagrams
- Compare stratigraphy and lithology
- Examine well construction
- Develop a localized conceptual model of groundwater movement

Model development focused on future utility

- Geologic factors can be used to identify development constraints.
- Geographic factors can be used to identify development limitations.
- Well construction factors can be used to improve existing construction guidelines.

Focus shifted to Field Study

- Concurrent NO3 sampling and water tables
- Verification of well construction via CCTV
- High level of public interest and support
- Try to resolve existing concerns

Scimitar area has nitrate history

Scimitar Surface Contours

Scimitar Bedrock Contours

Elevation Above Sea Level (ft.)

• 9 samples for intensive chemical analysis

PERFORMED IN AUGUST, 1999 2. WELL LOCATIONS BASED ON USGS COORDINATES AND

Scimitar NW-SE Section

Scimitar WNW-ESE Section

Scimitar Upper Transverse Section

Scimitar Lower Transverse Section

Scimitar Middle Transverse Section

Nitrate is higher in ground waters at or above the bedrock surface

20 Ø. Distance from static water level to -20 bedrock elevation -40 -60 -80 -100 ALL WELLS SAMPLED BY MO -120 $NO3 < 1$ mg/L $NO3 > 1$ mg/L

USGS analysis showed 2 distinct types of water chemistry

Nitrate occurrence is linked to certain other ions

Nitrate and chloride are strongly correlated

Boron isotope ratios suggest human sources

Groundwater CFC's in "nitrate wells" are higher than atmospheric source levels

Conclusions from USGS Chemistry

- Two distinct water types in Scimitar
- Nitrate goes up with
	- **Hart Communication** increasing Chloride, Magnesium, and CFC
	- **Hart Communication** decreasing Sulfate, Sodium, and Boron
- Boron isotope ratios and CFC results suggest human influence with higher Nitrate
- Nitrate not reactive in shallow ground water

What we learned:

- Analysis of historic data was not very useful in determining vulnerability of particular sites.
- NO3 occurrence:
	- $\mathcal{L}_{\mathcal{A}}$ may be on the increase in certain areas.
	- $\mathcal{L}_{\mathcal{A}}$ varies depending on site-specific conditions.
	- $\mathcal{L}_{\mathcal{A}}$ is not necessarily related to "bad" conditions.
- In Scimitar Subdivision, NO3 is linked to shallow groundwater:

Strong correlation with other chemical signatures

 $\mathcal{L}_{\mathcal{A}}$ Likely to have wastewater influence

What we should do:

- Encourage development of deep bedrock aquifers.
- Reconsider the 100 foot setback.
- Control well construction:
	- and the contract of the contract of Eliminate transport along casing annulus
	- and the contract of the contract of Ensure isolation of clean aquifers

There are still a few things we don't know:

- Do NO3 hotspots mean a general increasing trend?
- Are all shallow aquifers influenced by septic discharges?
- How deep do we have to go?
- Will improved well construction make a difference?

• Will well remediation eliminate NO3?

Thank you for your interest.

Stay tuned as the Municipality seeks additional funding for further investigations.

LEGEND:

- ķ STATIC WATER
- WELL CASING
- UNCASED WELL
- **BEDROCK**
- EXIST, GROUND
- rp
T SEEPAGE ELEV.
- ľ PERFORATION ELEV.

